В НОЦ ФМНС созданы сверхпроводниковые кубиты‑трансмоны мирового уровня с временем когерентности в 50 микросекунд

17 апреля 2019 года

Инженеры и ученые МГТУ им. Н.Э. Баумана и ФГУП «ВНИИА» ГК «Росатом» на базе совместного НОЦ «Функциональные Микро/Наносистемы» (НОЦ ФМН), в кооперации с  учеными ИФТТ РАН, МИСиС, МФТИ и РКЦ, разработали технологию создания сверхпроводниковых кубитов со «временем жизни» на уровне 50 микросекунд. Полученные результаты не уступают параметрам квантовых процессоров лучших мировых аналогов от IBM, Google, Intel. Это важнейший шаг на пути к созданию российского универсального квантового компьютера. Ключевые игроки зарождающегося рынка квантовых вычислений выбрали в качестве технологической платформы именно сверхпроводниковые кубиты. 

Кремниевая пластина с чипами и чип сверхпроводникового квантового процессора

© НОЦ ФМН. Кремниевая пластина с чипами и чип сверхпроводникового квантового процессора, который может обрабатывать информацию на несколько порядков быстрее, чем полупроводниковые чипы классических компьютеров.

В результате 2-х летней работы были созданы и экспериментально продемонстрированы кубиты типа 2D-трансмон. Многокубитные квантовые процессоры всех мировых IT-гигантов построены именно на базе кубитов этого типа. Сверхпроводниковые кубиты имеют неоспоримые преимущества, так как могут быть изготовлены «стандартными» методами современной наноэлектроники. А это означает простую и быструю возможность масштабирования сверхпроводниковых квантовых схем и массовый выпуск квантовых процессоров. «Стандартными» эти методы наноэлектроники являются только для узкого круга высококвалифицированных специалистов, обладающих лучшими технологическими возможностями в мире. Сегодня в НОЦ ФМН на базе МГТУ им. Н.Э. Баумана создана технологическая база, позволяющая конкурировать с мировыми научными лабораториями. Сверхпроводниковые кубиты «не терпят» любых, даже атомарных загрязнений интерфейсов и поверхностей, поэтому требуют применения сложнейших технологий изготовления. Они работают стабильно только в контролируемой среде и при температурах, ниже температур жидкого азота и даже глубокого космоса – в непосредственной близи абсолютного нуля по Кельвину. До 2016 года отставание по основным параметрам отечественных сверхпроводниковых квантовых вычислителей и симуляторов составляло более 10 лет. 

Результаты измерения однотоновой спектроскопии, двухтоновой спектроскопии, времени релаксации и времени декогеренции кубитов 2D-трансмонов

© НОЦ ФМН. Результаты измерения однотоновой спектроскопии, двухтоновой спектроскопии, времени релаксации и времени декогеренции кубитов 2D-трансмонов.

Сегодня в России впервые создан комплекс конкурентоспособных серийных технологий и технических решений в области квантовых вычислений на базе сверхпроводниковых кубитов. В НОЦ ФМН разработана российская технология изготовления кристаллов квантовых процессоров с нанометровыми размерами элементов кубитов. Создан базовый модуль сверхпроводникового квантового компьютера. Модуль основан на коммерческом криостате растворения и разработанных в центре специальных системах сверхвысокочастотной фильтрации, многоуровневого экранирования, необходимых блоков управляющей спецэлектроники и программного обеспечения. Созданный комплекс не имеет аналогов в России и соответствует лучшим мировым образцам. Разработанные технологии  позволяют «с нуля» с применением новейших методов наноэлектроники создавать сверхпроводниковые кубиты – «транзисторы» квантовых процессоров, и квантовые многокубитные сверхпроводниковые интегральные схемы. Илья Родионов, директор НОЦ ФМН, поделился мыслями и планами предстоящей работы:

«…Полученный результат мы считаем промежуточным, мы понимаем, что делать на следующем этапе. Мы планируем двигаться в сторону 100-кубитного компьютера со временами жизни кубитов более 100 микросекунд. А главная наша цель – создать универсальный квантовый компьютер, что позволит решать практические задачи, полезные для нашей страны. Мы довольно четко понимаем и представляем, что должно быть усовершенствовано и в технологии, и в эксперименте, и в измерениях, и в алгоритмах для того, чтобы прийти к практически полезному квантовому симулятору, а дальше к созданию универсального квантового компьютера…»

Россия уверенно занимает свою позицию в закрытом технологическом клубе и начинает участие в мировой цифровой квантовой гонке. Безграничные возможности  квантовых компьютеров - по шифровке и дешифровке информации, моделированию сложнейших процессов квантовой химии и новых материалов, расчету процессов связанных с новыми производственными технологиями, созданию и исследованию новых лекарств, расчёт сложных теплофизических процессов  и многое другое – будут возможны и для нашей страны.

Работы осуществлены в предельно сжатые сроки в рамках проекта Фонда перспективных исследований (ФПИ), который выполняется в широкой научно-технической кооперации ФГУП «ВНИИА», МГТУ им. Н.Э. Баумана, ИФТТ РАН, МИСиС, МФТИ, РКЦ, и НГТУ, а также инициативной программы исследований ФГУП «ВНИИА». Благодаря кооперации лидирующих российских научных команд, созданной в рамках проекта ФПИ, уже реализованы однокубитные и двухкубитные логические вентили с точностью операций от 80 до 99%, что позволит в ближайшее время перейти к созданию российских многокубитных квантовых процессоров.

НОЦ ФМН – совместный технологический центр МГТУ им. Н.Э. Баумана и ФГУП «ВНИИА», обеспечиващий реализацию передовых практических исследований в области элементной базы на новых физических принципах, квантовых технологий, нанофотоники и оптики, биоаналитических платформ типа «лаборатория на чипе», МЭМС/МОЭМС и тонкопленочных технологий. Исследования в центре выполняются с использованием комплексов оборудования ведущих мировых производителей, объединенных в единый технологический кластер, а также на оборудовании, приобретаемом в рамках динамично развивающегося промышленного консорциума.

МГТУ им. Н.Э. Баумана – один из крупнейших государственных технических университетов и научных центров России и Европы. Обучение в МГТУ им. Н.Э. Баумана ведется на 19 факультетах дневного отделения. Существует 2 филиала МГТУ в Калуге и Мытищах, а так же техникум. Основными структурными подразделениями университета являются научно-учебные комплексы, имеющие в своем составе факультет и научно-исследовательский институт.

ФГУП «ВНИИА» - создано в 1954 г. и является одной из ведущих научно-исследовательских организаций Государственной корпорации по атомной энергии «Росатом».


Все новости
Визит делегации концерна Carl Zeiss и холдинга ОПТЭК
Визит делегации концерна Carl Zeiss и холдинга ОПТЭК
3 ноября прошла встреча с руководством концерна Carl Zeiss и холдинга ОПТЭК. В составе делегации - T. Spitzepfeil – член совета правления концерна, U. Hoffmann – член совета правления концерна, M. Hubensack – президент Zeiss Meditec, J. Novoa – руководитель развития сети региональных партнеров Carl Zeiss Microscopy, G. Bauhammer – менеджер по развитию бизнеса Carl Zeiss Microscopy в РФ, О. Середкина – генеральный директор ООО «ОПТЭК», М. Игельник – управляющий холдинга OPTEC Group, Николас фон Корфф – финансовый директор холдинга OPTEC Group, В. Власенко – директор департамента научного и промышленного материаловедения ООО ОПТЭК, А. Ульяненков – директор департамента междисциплинарных проектов.
Отмечаем год эффективного сотрудничества компании «Маппер» и НОЦ ФМН
Отмечаем год эффективного сотрудничества с компанией «Маппер»
Сложившееся взаимодействие является взаимным – за прошедший год эффективного сотрудничества организации неоднократно «обменялись» заказами на изготовление уникальных изделий и технологических операций...
Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines Опубликована работа
Опубликована наша новая статья в журнале "Journal of Electronic Materials"
Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines В статье представлена модель для расчёта эксплуатационных характеристик термоэлектрических генераторов для малокубатурных двигателей внутреннего сгорания транспортных средств (например, мотоцикл, квадроцикл или снегоход). Их применение отрывает возможности для получения дополнительной электроэнергии путем утилизации тепловой мощности выхлопных газов. Установка ТЭГ на выхлопной трубе существенно проще, чем замена штатного электро-механического генератора из-за весьма плотной копоновки двс мотоциклетного типа. Разработанная модель позволяет определить основные эксплуатационные характеристики ТЭГ (электрическую мощность, КПД, и массу) при различных вариантах использования. Расчёты выполнены для нескольких компоновок ТЭГ, предложенных для ДВС Yamaha WR450F.
Численное моделирование процессов тепломассопереноса в микрофлюидном тепловом датчике потока Опубликована работа
Опубликована наша новая статья в журнале "Вестник Московского государственного технического университета им. Н.Э. Баумана"
Численное моделирование процессов тепломассопереноса в микрофлюидном тепловом датчике потока ВЕСТНИК МОСКОВСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА ИМ. Н.Э. БАУМАНА СЕРИЯ: ПРИБОРОСТРОЕНИЕ #5(116)/2017