Альтернативная энергетика

В термоэлектрических устройствах осуществляется прямое и обратное преобразование тепловой энергии в электричество, основанное на эффектах Зеебека, Пельте и Томсона. Данные эффекты проявляются при наличии разности потенциалов за счет диффузии носителей тока (электронов и дырок) при создании в ней градиента температуры, что используется в термоэлектрических генераторах электроэнергии, и, наоборот, в выделении или поглощении тепла при движении в такой структуре носителей тока. Последнее нашло применение в холодильных устройствах.

Термоэлектрическое преобразование энергии
В термоэлектрических устройствах осуществляется прямое и обратное преобразование тепловой энергии в электричество, основанное на эффектах Зеебека, Пельте и Томсона. Данные эффекты проявляются в возникновении разности потенциалов в полупроводниковой структуре за счет диффузии носителей тока (электронов и дырок) при создании в ней градиента температуры, что используется в термоэлектрических генераторах электроэнергии, и, наоборот, в выделении или поглощении тепла при движении в такой структуре носителей тока. Последнее нашло применение в холодильных устройствах.

    

В термоэлектрических генераторах (ТЭГ) в качестве источников тепла может быть использовано органическое либо ядерное топливо, радиоактивные изотопы, рассеиваемое тело отработавших газов двигателей внутреннего сгорания, промышленных установок и т.д.

Несмотря на относительно низкий КПД термоэлектрического преобразования энергии, который на текущий момент составляет 5-8%, благодаря отсутствию движущихся частей, бесшумности и надежности, позволяющей работать таким системам в необслуживаемом режиме в течение длительного срока эксплуатации, который может достигать десятилетий, ТЭГ нашли свое применение при создании резервных или аварийных источников электроэнергии в районах децентрализованного электроснабжения, в частности на Крайнем Севере, генераторов на органическом топливе для защиты трубопроводов от коррозии (станции катодной защиты) и питания газораспределительных пунктов. На сегодняшний день таким генераторам практически нет альтернативы при освоении дальнего космоса. Запущенные в 1977 году 2 аппарата программы Вояджер с радиоизотопными термоэлектрическими генераторами (РИТЭГ) на борту, успешно исследовав дальние планеты Солнечной системы, в настоящее время продолжают передавать данные для исследования переходных областей между солнечной и межзвёздной плазмой, являясь самыми удалёнными, долго и продуктивно работающим космическими объектами, созданным руками человека.

В настоящее время для будущих космических программ разрабатываются новые более эффективные радиоизотопные термоэлектрические генераторы с большей удельной электрической мощностью и сроком службы. 

Успешное применение термоэлектрического преобразования энергии в космических системах, высокая надежность РИТЭГ, огромное количество тепла, рассеиваемого в атмосфере, а также наметившийся мировой тренд на повышение энергоэффективности и экологичности технологий побуждают исследователей к расширению областей применения термоэлектрических генераторов, поиску и разработке новых более эффективных термоэлектрических материалов, оптимизации конструкторско-технологических решений, снижению стоимости подобных систем. В 2006 году, например, для изучения Плутона и его спутника Харона запущена автоматическая межпланетная станция «Новые рубежи» с РИТЭГ на борту.

Radioisotope thermoelectric generator Space Radioisotope thermoelectric generator

Одним из направлений работы НОЦ «Функциональные микро/наностстемы» (НОЦ ФМНС) МГТУ им. Н.Э. Баумана в данной области является разработка термоэлектрических генераторов, преобразующих рассеиваемое тепло транспортных энергетических установок и промышленных предприятий в электроэнергию.

В 2016 году совместно с кафедрой «Поршневые двигатели» был закончен проект по разработке экспериментального образца источника электрического питания с непосредственным преобразованием теплоты для транспортных систем различного назначения. Проект направлен на повышение эффективности работы двигателя путем утилизации части тепловой энергии, выделяющейся с выхлопными газами, доля которой составляет до 37% энергии сгораемого топлива.  Часть этой энергии может быть преобразована в полезную работу путем установки в выпускной системе термоэлектрического генератора, который позволяет повысить его энергоэффективность, снизить расход потребляемого топлива до 7%, а в некоторых случаях отказаться от штатного генератора.

a31.png a32.png

В рамках проекта была разработана математическая модель ТЭГ для ДВС, учитывающая в комплексе совокупность гидравлических, тепловых, электрических и механических процессов в силовой установке. Модель позволяет проводить расчет генераторов как с воздушным, так и водяным охлаждением, учитывает затраты электрической мощности на работу управляющей электроники, позволяет учитывать обратное влияния ТЭГ на ДВС за счёт создания гидравлического сопротивления в канале движения выхлопных газов, выбирать наиболее эффективные конструкции теплообменников для различных типов ДВС, включая стационарные установки.

 

Разработан и изготовлен экспериментальный стенд, который позволяет определять параметры математической модели и проводить её верификацию, исследовать особенности работы и производить доводку термоэлектрического генератора при установке его на различные двигатели. Входящие в состав стенда ступичный мощностной стенд и нагрузочное устройство позволяют проводить испытания ТЭГ в составе транспортного средства, моделируя в лабораторных условиях различные режимы движения автомобиля. Разработаны и изготовлены макеты ТЭГ для легковых и грузовых автомобилей мощностью: до 500 Вт и до 1 кВт.


Стоит отметить, что разработку автомобильных термоэлектрических генераторов ведут практически все крупнейшие мировые автопроизводители, включая Ford, GM, Toyota, BMW, Mercedes. Вместе с тем в настоящее время отсутствуют серийные образцы таких генераторов, что обусловлено необходимостью разрешения при проектировании эффективных систем множества технических противоречий, как, например, обеспечение в ограниченных габаритах одновременно интенсивного потока тепла через термоэлементы и малого гидравлического сопротивления. Разрешение этих противоречий требует комплексного всего множества процессов преобразования энергии в таком генераторе. 

В рамках выполненного проекта были предложены пути преодоление конфликта между положительным и негативным влиянием ТЭГ на ДВС, разработана методика рационального проектирования конструкции теплообменника, а также разработаны отельные конструкторско-технологические решения, повышающие эффективность установки автомобильных ТЭГ, включая применения теплообменника с изменяемой геометрией рёбер для снижения сопротивления при больших скоростях ОГ и повышения теплового потока при малых скоростях.

Помимо разработки законченных термоэлектрических систем преобразования энергии в НОЦ ФМНС также ведутся работы по разработке конструкторско-технологических решений, направленных на повышение эффективности и надежности термоэлектрических модулей как холодильного, так и генераторного назначения, разработке методик измерения физико-механических свойств полупроводниковых термоэлектрических материалов, термоэлементов и термоэлектрических батарей, а также разработке методик контроля технологического процесса их изготовления, включая оценку показателей надежности.

Другие направления
Последние события ФМН
В НОЦ ФМН созданы сверхпроводниковые кубиты-трансмоны мирового  уровня с временем когерентности в 50 микросекунд
В НОЦ ФМНС созданы сверхпроводниковые кубиты‑трансмоны мирового уровня с временем когерентности в 50 микросекунд
Инженеры и ученые МГТУ им. Н.Э. Баумана и ФГУП «ВНИИА» ГК «Росатом» на базе совместного НОЦ «Функциональные Микро/Наносистемы» (НОЦ ФМН), в кооперации с учеными ИФТТ РАН, МИСиС, МФТИ, РКЦ и НГТУ, разработали технологию создания сверхпроводниковых кубитов со «временем жизни» на уровне 50 микросекунд. Полученные результаты не уступают параметрам квантовых процессоров лучших мировых аналогов от IBM, Google, Intel. Это важнейший шаг на пути к созданию российского универсального квантового компьютера. Ключевые игроки зарождающегося рынка квантовых вычислений выбрали в качестве технологической платформы именно сверхпроводниковые кубиты.
Визит делегации концерна Carl Zeiss и холдинга ОПТЭК
Визит делегации концерна Carl Zeiss и холдинга ОПТЭК
3 ноября прошла встреча с руководством концерна Carl Zeiss и холдинга ОПТЭК. В составе делегации - T. Spitzepfeil – член совета правления концерна, U. Hoffmann – член совета правления концерна, M. Hubensack – президент Zeiss Meditec, J. Novoa – руководитель развития сети региональных партнеров Carl Zeiss Microscopy, G. Bauhammer – менеджер по развитию бизнеса Carl Zeiss Microscopy в РФ, О. Середкина – генеральный директор ООО «ОПТЭК», М. Игельник – управляющий холдинга OPTEC Group, Николас фон Корфф – финансовый директор холдинга OPTEC Group, В. Власенко – директор департамента научного и промышленного материаловедения ООО ОПТЭК, А. Ульяненков – директор департамента междисциплинарных проектов.
Отмечаем год эффективного сотрудничества компании «Маппер» и НОЦ ФМН
Отмечаем год эффективного сотрудничества с компанией «Маппер»
Сложившееся взаимодействие является взаимным – за прошедший год эффективного сотрудничества организации неоднократно «обменялись» заказами на изготовление уникальных изделий и технологических операций...
Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines Опубликована работа
Опубликована наша новая статья в журнале "Journal of Electronic Materials"
Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines В статье представлена модель для расчёта эксплуатационных характеристик термоэлектрических генераторов для малокубатурных двигателей внутреннего сгорания транспортных средств (например, мотоцикл, квадроцикл или снегоход). Их применение отрывает возможности для получения дополнительной электроэнергии путем утилизации тепловой мощности выхлопных газов. Установка ТЭГ на выхлопной трубе существенно проще, чем замена штатного электро-механического генератора из-за весьма плотной копоновки двс мотоциклетного типа. Разработанная модель позволяет определить основные эксплуатационные характеристики ТЭГ (электрическую мощность, КПД, и массу) при различных вариантах использования. Расчёты выполнены для нескольких компоновок ТЭГ, предложенных для ДВС Yamaha WR450F.
Численное моделирование процессов тепломассопереноса в микрофлюидном тепловом датчике потока Опубликована работа
Опубликована наша новая статья в журнале "Вестник Московского государственного технического университета им. Н.Э. Баумана"
Численное моделирование процессов тепломассопереноса в микрофлюидном тепловом датчике потока ВЕСТНИК МОСКОВСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА ИМ. Н.Э. БАУМАНА СЕРИЯ: ПРИБОРОСТРОЕНИЕ #5(116)/2017